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Abstract—This article introduces LinkStream, a liquidity mod-
eling system based on multiple video streams designed and
implemented for oilfield. LinkStream combines a variety of
technologies to solve several problems in computing power and
network latency. First, the system adopts an edge-central archi-
tecture and tailoring based on spatio-temporal correlation, which
greatly reduces computing power requirements and network
costs, and enables real-time analysis of large-scale video stream
on limited edge devices. Second, it designed a set of liquidity
models to describe the liquidity status in the oilfield. Finally, it
uses object tracking technology to design a counting algorithm
for the unique tubing object in the oilfield. We have deployed
LinkStream in an oilfield in Iraq. LinkStream can perform real-
time inference on over 200 video streams with acceptable resource
overhead.

Index Terms—Liquidity Modeling, Edge Computing, Object
Counting, Cross-Camera Tracking

I. INTRODUCTION

The rapid development of the Internet of Things (IoTs)

and Deep Learning has made it possible to build intelligent

analysis systems based on large-scale video stream. A series of

applications designed for different scenarios were born, such

as industrial security, home automation, and smart city. This

work, which aimed at the oilfield industrial zone, has designed

and implemented a system based on large-scale cameras for

object tracking and liquidity monitoring.

This system was deployed in Majnoon oilfield, which is one

of the largest oilfields in the world. It is located in the southeast

of Basra, Iraq, with an oilfield area of 626 square kilometers.

In the oilfield, data transmission is required to be a high

priority for oil and gasoline industry especially production and

environmental data. To cover core facilities and well pads,

we plan to deploy over 300 wireless Mesh nodes for the

comprehensive backbone communication system in Majnoon

oilfield. Based on the Backbone Communication Network,

smart video analysis applications shall be actively monitored

to assist personnel in protecting oilfield public property by

detecting and preventing crime. These applications also need

to detect intruders and automatically notify guards or broadcast

messages through loudspeakers. Edge detection applications

need to be scalable and help reduce bandwidth and storage

usage by sending and recording only related videos.

Figure 1 shows the schematic diagram of the camera deploy-

ment position and several camera video images. Hundreds of

surveillance cameras are deployed at the entrances, crossroads,

Fig. 1. Deployment of Three Representative Cameras in Majnoon Oilfield

industrial regions, and warehouses of the industrial zone. In

addition, there are security personnel carrying video capture

equipment for patrol monitoring. Different from other indus-

trial areas, the data collected by the monitoring equipment

deployed in the oilfield includes not only general objects such

as personnel and vehicles, but also special objects such as oil

tubing and oil tanks. The use of video information provided by

multiple devices to model and analyze the liquidity informa-

tion of these objects in the oilfield is of great significance

to the establishment of a higher-level intelligent industrial

management system.

While the large-scale video stream provides rich informa-

tion, it also brings huge challenges to the system design.

Specifically, in order to meet the needs of real scenes, we

need to pay attention to the following problems:

• Large-scale video stream (up to hundreds of channels)

puts a huge demand on the computing power of the

system. It is unrealistic to use cloud servers for model

inference while the network in oilfiled is poor with

unacceptable overhead and delay. At the same time, cross-

camera analysis will amplify the computational load

caused by the scale of the data stream, because it needs

to cross the camera and time to discover the correlation

between different objects.

• In an oilfield with a large area, both fixed-position cam-

eras and mobile cameras are needed. How to construct

a spatio-temporal correlation model to describe liquidity
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information based on the data analysis results of several

cameras is another issue worthy of attention.

• Object counting task is an important part of analyzing

liquidity data. For general objects such as person and

vehicles, traditional cross-camera object tracking has

achieved good results [1], [2], [3]. However, how to count

the oil tubing that are densely stacked is still a problem

to be solved.

In this work, we propose LinkStream, a liquidity modeling

system based on multiple video streams. This system integrates

multiple technologies to solve these challenges.

Edge-Central Architecture Design. We use an edge-

central computing architecture that offloads some tasks to edge

nodes to save computing power on edge servers. The design

consists of two parts: the frame filtering of the fixed camera

and the independent processing of the mobile camera.

Spatio-Temporal Correlation. By constructing a spatio-

temporal correlation model, we predict the probability of the

object moving between two specific cameras with a certain

time interval to tailor the search space of the ReID task. It

will reduce the cost of cross-camera analysis.

Counting Based on Object Tracking. Aiming at the tubing

object, we propose a counting algorithm based on ”Detection +

Tracking”. The algorithm uses the improved YOLOv3 model

and DeepSORT algorithm to obtain preliminary results and

corrects the results based on geometric relations.

Liquidity Model. We divide the oilfield into several sub-

areas that do not overlap with each other according to ge-

ographic location, and associate the camera with the sub-

areas. Based on single-camera counting and cross-cameras

tracking, we can obtain the object liquidity relationsh between

the regions.

We deploy the system in a oilfield and use real data stream

to inspect this system. On this basis, we separately inspected

the different units of the system, and evaluated the system

design in terms of resource overhead, system delay, and ac-

curacy performance. Evaluation result shows that LinkStream

can save 30% to 60% in various resource indicators compared

to the unoptimized version. Secondly, LinkStream can perform

real-time inference on over 200 video streams with a delay of

no more than 2s. Besides, the tubing counting algorithm can

count tubing at a speed of 15fps, while the error rate does

not exceed 4%. Finally, the liquidity information described by

LinkStream can be used in other parts of the system, such as

real-time monitoring and alarms.

We will show a brief overview of the design framework of

the whole system in Section II-A, and describe the technical

details of the system components mentioned in overview in

detail in the remainder of Section II, including the division

of labor design between camera and server (Section II-B), the

object counting algorithms (Section II-D), and the liquidity

model (Section II-E). Then, we will show our detailed de-

ployment configuration and some experimental results on the

system in Section III. Finally, we will introduce some existing

related work in Section IV .

II. SYSTEM DESIGN

A. Overview

Figure 2 shows the architecture design of LinkStream,

which composed of a two-tier structure of Edge Device -

Central Server. The edge device refers to the multi-channel

cameras used to capture video stream, and the central server

is responsible for scheduling hardware and executing algo-

rithms. Because different components play different roles

in the system, we will run frame filtering and lite object

tracking algorithms on the camera, and run object tracking

algorithms and cross-camera analysis algorithms on the central

server. Cross-camera analysis of large-scale video stream will

bring huge computational resource overhead, especially when

running deep learning algorithms that take up a lot of GPU

and memory. Therefore, we use the spatio-temporal correlation

of the object liquidity between cameras to optimize system

performance. To obtain liquidity information, it is also neces-

sary to convert the results of object tracking into quantitative

information. So we have designed a set of algorithms for

counting different objects in oilfield to count the numbers.

Finally, the system combines the above information with the

actual map to get a series of descriptions about the oilfield’s

object liquidity information, which can be used by managers

to monitor the status of the oilfield area and also can be used

by other advanced applications through API.

B. Edge Camera Process

For the edge-central architecture, using the computing

power of the edge nodes is important to solve the problem of

poor cellular network in oilfield area and limited computing

power of the central server. The edge node is responsible for

tasks such as video capture, lightweight analysis, and dynamic

offloading. The task of executing heavyweight analysis algo-

rithms and integrating the analysis results will be deployed on

the central server.

The cameras in this system includes two parts: fixed-

position cameras and mobile cameras. They have various

differences in computing power, network, and system roles.

Fixed cameras are generally placed in important areas of

the oilfield (such as entrances and exits, crossroads, etc.).

Mobile cameras are mainly used to somewhere hard to cover

by fixed cameras, including roads and open areas. Because

of the hardware limitations of the fixed camera (generally

normal webcam), the algorithms it can run are limited, but

can transmit data to the central server via network cable. The

mobile camera can use a device with computing power such

as a smart phone, and it is only able to transmit data to the

central server through cellular or mesh network.

Based on the above analysis, we only run the intelligent

frame filtering task on the fixed cameras, and all filtered video

frames are handed over to the central server for subsequent

tasks, such as single-camera object tracking and cross-camera

analysis. Besides, we deploy a small single-camera object

tracking algorithm on the mobile camera, and only send the

final processing result to the central server.
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Fig. 2. System Architecture

The frame filtering algorithm is mainly based on difference

detection [4]. We will hold a buffered frame and calculate

the point of difference with newly frame of the video stream.

The newly frame with the point greater than the threshold is

marked ”new” and be used to update buffered frame, otherwise

it is marked ”same”. The mark information will be sent to

the central server along with the video. The judgment of the

point of difference mainly relies on the motion vector and the

comparison of inter-frame macroblocks.

C. Cross-Camera Analysis

The main goal of the cross-camera analysis task is to obtain

the movement of the same object between different fixed

cameras which has been executed frame filtering.

The distribution of fixed cameras is discrete: compared with

the physical area of the oilfield, the coverage area of fixed

cameras only occupies a small part, and it takes longer time

to move between cameras. So we will solve this problem

through cross-camera object re-identification (ReID) based

on the single-camera object tracking results. It should be

noted that it is expensive to re-identify large-scale objects in

large-scale video stream one by one, so we need design an

algorithm to tailor the search space. Some empirical analysis

[5] shows that the movement of a object between cameras

in a specific area shows spatial and temporal correlation.

We design a search space pruning algorithm based on this

spatio-temporal correlation to improve system performance.

We define n(ci, cj) as the historical frequency of appearance

in camera cj after leaving camera ci.
The information about the appearance, movement and de-

parture of objects can be obtained by single-camera object

tracking algorithm. Due to the sparsity of camera distribution,

when a object leaves a certain camera, it may appear in the

camera network next time in tens of minutes. It is unreasonable

to find the destination of the object in all of the subsequent

frames. Therefore, we use reverse matching to track the

trajectory. The system saves the characteristic information of

the object leaving one monitoring area in the database. When

a new tracking object is detected by a camera, we do ReID

task on this object with all of unknown location object in the

database. If the ReID match is successful, system will report

an inter-camera liquidity event and remove related data from

the database. Otherwise, system will report that a new object

has appeared.
Doing ReID task in historical objects one by one has a

large time overhead, so we use spatio-temporal information

to prune the search space. Compared with ”whereabouts”,

reverse matching in our system pay more attention to ”source”.

Therefore, we define S(ci, cj) as:

S(ci, cj) =
n(ci, cj)∑
s n(cs, cj)

(1)

S(ci, cj) represents the probability that the object appearing

in the cj camera comes from the camera ci. We will give

priority to the ReID matching of the object in the camera with

a larger robability. For each source camera ci, we will only

consider objects whose interval time is λij ± 2σij , where λij

and σij are the average and standard deviation of the interval

time of all objects from ci to cj .
If there is still no matching result after checking the cameras

with 95% of the cumulative probability density, we will

execute a complete historical object matching. If this match

is still not successful, mark the object as a new object and do

subsequent operations.
How to get the spatio-temporal correlation information

used in this algorithm is another important issue. A one-time

solution is to perform offline analysis on the dataset of the

real scene to get frequency information. This is an expensive

one-time operation. The modeled spatio-temporal correlation

data can be directly used in system deployment.
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Fig. 3. Different Types of Oil Tubing Placed in Open Areas.

In the actual system implementation, we also added a

series of small tricks to improve system performance. First

of all, considering that the oilfield has fences and entrances,

we have marked some cameras as ”entrance” and the object

leaving from the specific direction of the monitoring screen

of ”entrance” cameras is regarded as leaving the oilfield area

These objects will not be added to the database that needs to

be tracked. Secondly, we believe that when a object leaves the

monitoring area for an hour, it has already resided in certain

areas of the oilfield. Further tracking in these object does not

have the meaning. Therefore, cross-camera tracking is only

for the object within an hour. In addition, we believe that

the spatio-temporal correlation model is class-special. This

idea is natural due to the difference in the speed of people

walking and vehicles traveling. Therefore, we will establish

their own spatio-temporal correlation models for different

tracking classes.

D. Crowd Counting

In order to improve the robustness of the algorithm, we

adopt object tracking framework in single-camera object

counting task. For objects with obvious feature, such as people

and vehicles, direct use of object tracking algorithms has

achieved good performance. However, there are few researches

on special object like tubing, which have similar shapes and

be small. We adopt the idea of ”Detection + Tracking” based

on multi-object tracking to counting to solve the problems of

incomplete detection and repeated detection that counting by

one pictures. Figure 3 shows that a large number of oil tubing

of various shapes are placed on the open area.

In the object detection stage, we add 2 feature maps of larger

size from the original 3 size feature maps of YOLOv3, and

correspondingly add 6 types of a prior bounding boxes with

smaller scales. This change reduces the receptive field of the

object detection model, making the network more sensitive to

small objects. Subsequently, we retrained the modified model

on our oil tubing data set.

Because the oil tubing are densely packed and irregular,

the object detection results often cause box overlap and

loss. Therefore, we use geometric laws to correct the object

detection. We assume that the tubing is arranged in Columns

(this assumption is true for the stored tubing), so the center

point of the detection frame must also be distributed in the

vicinity of several straight lines. Based on this assumption,

the algorithm can be given as follows:

Algorithm 1: Initialization of the Tubing Column

input : Detection boxes sequence box list
output: List of ”Column” result list[]

1 Sort box list by abscissa;

2 result list[] ← initResultList ();

3 foreach element item of box list do
4 flag ← 0;

5 foreach element list of result list[] do
6 a ← list.end();
7 if a.x == item.x then
8 CONTINUE;

9 k ← item.y−a.y
item.x−a.x ;

10 if |k| < λ1 and |item.y − a.y| < item.y × λ2

then
11 list.append(item);
12 flag ← 1;

13 BREAK;

14 if flag == 0 then
15 nlist ← newList();
16 nlist.append(item);
17 result list.append(nlist);

1) Column Building: We arrange the detection boxes ac-

cording to the abscissa, and use several lists to represent

several columns arranged in parallel, and then assign the

detection boxes to the middle area of the corresponding

column. See the pseudo code of Algorithm 1 for specific

allocation and construction rules.

2) Column Delete: For each column, calculate the degree

of overlap of the abscissa with other columns by the

coordinates of the first element and the last element. If

the degree of overlap with any other column is less than

the threshold (We set the threshold to 0.2), this column

will be deleted.

3) Box Delete: Traverse the elements in each column in

order. If the overlapping area of a detection box with

the front and back boxes is greater than 70%, it will be

regarded as a duplicate box and will be deleted.

4) Box Completion: We calculate the average width of

each line of detection boxes and traverse. For a check

box in a column if its si of any box is greater than

0.5 times the average Width and the horizontal distance

between this box and the previous box is larger than

0.7 times of average width, a detection frame with an

average width is added in the middle of the two. The

calculation method of si is:

si = xi − x1 −
i−1∑

k=1

wk (2)
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After correcting the detection frame, the detection result

will be entered into DeepSORT for object tracking, and the

unique track-id will be used as the counting object. Taking into

account the repeated occurrence of objects caused by camera

shake, only the tracking objects appearing in the central area

of the frame are considered in the counting phase.

E. Liquidity Model

In Section II-B - II-D, we showed several parts that make

up the system. These algorithms finally get some information

by analyzing the data of multiple video streams, and we will

design our liquidity model based on these information.

First, we divide the oilfield area into multiple sub-areas

according to the physical logic, such as the oilfield gate, ware-

house entrance, warehouse interior, mine inspection points,

etc. These sub-areas do not overlap with each other and

constitute a coverage of the effective area of the oilfield.

Then, we associate the camera with these sub-areas. The

physical installation location of a fixed camera determines

which sub-area it will be associated. Our model allows

multiple cameras to be associated with the same area. For

mobile cameras, due to its flexibility, managers can freely

designate patrol routes, which means that it will be associated

with multiple sub-areas, depending on the specific location

corresponding to the current video frame. We make the mobile

camera cover the sub-area not covered by the fixed camera as

much as possible.

The single object tracking algorithm on the mobile camera

reports the number of objects detected by the camera at the

current position to the central camera. Although this detection

task can also be performed by the object detection framework,

the counting based on object tracking can reduce the influence

of the outlier detection results of individual frames caused

by short-term occlusion and other factors, and improve the

robustness of counting. The detection result is combined with

the area corresponding to the current coordinates of the mobile

camera to give information about the number of objects in the

area.

Although the fixed camera video is processed by the central

server, similar information about the number of objects in

the area can also be obtained. In addition, the cross-camera

analysis of the central camera on the multi-channel fixed

camera video stream can obtain the liquidity relationship of

the object between the regions. Considering that there are

multiple cameras associated with the same sub-area, in order to

convert the liquidity information between cameras into inter-

area liquidity information, it is also necessary to filter the

object liquidity in the same sub-area and merge the liquidity

between sub-areas with the same starting point or end point.

Besides, since we have marked the ”entrance” camera, we can

also get information about the entry and exit of person and

vehicles in the oilfield area.

In general, our description of the liquidity within the oilfield

mainly includes: a) Information about the number of objects

counted within the scope of a fixed or moving camera at

a certain time; b) Information about the movement of the

object across the camera; c) People, vehicles, etc. entering and

leaving the oilfield region information; d) The estimated total

number of each object in the oilfield by summarizing above

data. These information can be used by managers to monitor

the status of the oilfield in real time, and can be used by other

advanced analysis programs.

III. EVALUATION

In this section, we will evaluate the performance of each

component of the system in terms of resource occupation and

algorithm effect.

A. Configuration

We deployed the LinkStream system in the oilfield area.

Approximately two hundred cameras are deployed in various

areas of the oilfield, covering almost all key areas. We use

Hikvision cameras as fixed cameras, and connect a small

codec device to perform frame filtering operations. We invited

10 patrol officers to hold mobile phones as mobile cameras.

The patrol personnel are trained to take the initiative to take

pictures when passing through the oil tubing object in the open

area to facilitate counting. In addition, we use a linux server

cluster equipped with NVIDIA Tesla T4 and GTX 1660Ti

GPUs as the edge server for processing video stream data.

In terms of software implementation, we use the Deep-

Stream framework as the main framework for the central

server to process video streams, and make several modifica-

tions based on the official version to support frame filtering,

automated deployment, message control, time stamp syn-

chronization and other functions. We implemented the frame

filtering algorithm based on some open source code [6]. For

object tracking tasks, we chose the YOLOv3 tiny framework

in mobile and use YOLOv3 framework optimized for small

objects in central server as the object detection framework, and

retrained in our real samples. The object tracking part of both

uses the DeepSORT algorithm. In addition, we use lightweight

ReID algorithm [7] to reduce the resource consumption of the

system. Next, we will evaluate the performance of LinkStream

on different performance indicators and make some compar-

isons, and finally show a schematic diagram of the system.

B. Bandwidth Consumption

We only measured the impact of mini-tracking algorithms

and frame filtering algorithms running on the camera on net-

work bandwidth because the traffic interaction only includes

the video stream and additional data.

For a 1080p, 30fps video stream shot by a mobile phone,

due to the movement of the camera, the video stream is

not same images frame by frame, and more than 100Mb

of original video data will be generated every minute. The

cellular network in the real oilfiled is only 1Mbps, so video

data cannot be transmitted in time. A small tracking algorithm

can save this part of the bandwidth, and only transmit object

statistical data that does not exceed 1Kbps. For fixed cameras,

the frame filtering algorithm only appends an additional byte

of data per frame, which can be ignored for fixed optical fibers.
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TABLE I
RESULTS OF SPEED

Object number Average FPS Proportion
0 24.62 19.0%

1-10 22.76 13.8%
11-20 20.87 16.7%
21-30 18.73 22.3%
31-40 15.32 15.2%
41-50 11.46 8.7%
>50 6.89 4.2%

After the optimization of this design, the optical fiber

data received by the central server every minute is almost

unchanged, still at 1Gb (200 channels, fixed picture saves bit

rate), and the cellular network data has been reduced from

more than 1G (10 patrol personnel) to less than 1M.

C. System Delay

The delays of different parts of the system have different

effects on the overall delay of the system. We will discuss the

different components separately.

1) Mini-Tracking and Crowd Counting Delay: The re-

trained YOLOv3 tiny + DeepSORT model can perform object

tracking at an average speed of 15 FPS on the mobile phone.

We noticed that the speed would change greatly with the

number of objects in the image. If there is no object in the

field of view, the detection speed can exceed 20 FPS; when

the number of objects is large (such as a large number of oil

tubing in the field of view), the detection speed will be as low

as 10 FPS or even lower.

We divided the interval according to the different number

of objects in the image to test the corresponding detection

speed. We use each frame in the video as an image for the

experiment, and give the proportion of each interval in the

video. The results are shown in Table I. Figure 4 shows the

change curve of the algorithm processing speed when passing

a group of object dense areas.

Statistical analysis of the patrol video shows that most of

the areas where the patrol personnel pass are few objects.

Therefore, for the 30-frame original video stream, we adopt

the strategy of sampling every other frame and only input the

15fps video stream into the processing pipeline. Experiments

show that this will not cause video congestion in a time

window, and the maximum processing delay of processing

results in densely-objected areas is about 53s.

2) Cross-Camera Analysis Delay: Since the fixed camera

has a fixed field of view, the number of detected objects

does not change much, and the object detection and tracking

algorithm running on it runs at a relatively stable speed.

The experiment results show that under the acceleration of

DeepStream and TensorRT, the YOLOv3 + DeepSORT model

can be used to process 24 channels of 30 FPS 1080P video

stream data in real time on a single Tesla T4 GPU. The server

computing power of our cluster is no less than 10 T4 GPUs,

which can support the real-time processing of more than 200

video streams in the entire oilfield area.

Fig. 4. It can be seen that the processing time of the video frame is positively
correlated with the number of objects in the current frame.

Fig. 5. Overall Delay

The hit rate of spatio-temporal correlation model is one

of the important components that affects the delay of cross-

camera analysis. We first manually annotate the camera data

for a week, which is used for system initialization. Subse-

quently, we tracked the system log to check the time-space-

related hit rate. The results show that the hit rate of the system

is finally stable at about 37%, which can about 82% of time

on average in each hit on average compared to naked search

without spatial tailoring.

3) Overall delay and Comparison: In addition to the main

components above, the overall delay of the system also in-

cludes the processing delay of the frame filtering algorithm,

the transmission delay of the network (wired link and cel-

lular network), video stream encoding and decoding delay,

stream redirection delay (system internal resource scheduling),

database cost of query. Figure 5 shows the delay of the

different components of the system and the overall analysis

delay from the generation of the video stream to the analysis

result. In addition, Figure 5 also compares the system analysis

latency without our optimization strategy.

As can be seen, due to the high transmission delay and

internal system delay, and the cluster has sufficient computing

power, our design has limited optimization of the overall sys-

tem delay. But it can better save system resource consumption

and ensure operational robustness.
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Fig. 6. Real-Time Detection and Counting Result

D. Accuracy

1) Tubing Counting Accuracy: We choose several indepen-

dent case in the real environment to show the result of counting

results, and compared the program processing results with the

real value, which is the accurate result after multiple manual

counting. The results are shown in Table II.

We found that the error of the 8 experiments was less than

4%, and the average error was 2.72%. We noticed that the

overall counting results were higher than the true value, which

should be due to the ID switch phenomenon caused by the

change of characteristics in the process of moving in the object

tracking. As a result of the phenomenon, some tubing was

counted for many times, making the result higher.

The real-time detection and counting effect is shown in

Figure 6. You can view the demo of the effect of the tubing

counting algorithm through [8].

TABLE II
RESULTS OF ACCURACY

Case ID Real value Processing results Error
1 144 149 3.47%
2 190 188 1.06%
3 318 306 3.77%
4 184 190 3.26%
5 207 199 3.86%
6 156 159 1.92%
7 411 423 2.92%
8 276 272 1.50%

2) Mini-Tracking Accuracy: In order to ensure the accuracy

of the mobile camera counting, we compared the counting

effects of the small tracking algorithm and the large tracking

algorithm. The results are shown in Table III.

It can be seen that because the robustness of object detection

is slightly inferior to that of large tracking algorithms, small

tracking algorithms running on mobile devices will produce

significant results, but this loss of accuracy is acceptable.

E. Resource Consumption

We compared the cost of system resources under different

camera numbers, where xF + yM means to connect x fixed

camera and y mobile camera. Figure 7 shows the bandwidth

overhead, which has been explained in Section III-B. Figure 8

shows the relative occupancy rate of the GPU decode unit.

TABLE III
RESULTS OF MINI-TRACKING ACCURACY

Case ID Real value YOLOv3 YOLOv3-Tiny
Vehicle Human Vehicle Human Vehicle Human

1 0 20 0 20 0 19
2 0 45 0 43 0 46
3 7 13 7 13 6 13

Fig. 7. Bandwidth Fig. 8. GPU Decode Consumption

The comparison object is a system that has not adopted

an optimization strategy. The save of decode unit is mainly

because the calculation on the mobile camera reduces the

number of video streams that the central server needs to

process. In addition, under the condition of 200F+10M, the

cost of GPU computing resources is reduced to 31% of the

original. The save of computing unit is mainly due to the

frame filtering algorithm and search space tailoring based on

spatio-temporal correlation, which greatly reduces the amount

of calculation performed by the central server.

IV. RELATED WORKS

Video Analysis System. In terms of hardware, some camera

manufacturers, such as Hikvision, Omnicast, ProVigil, etc.,

provide closed solutions based on smart cameras, but this

can only be used in a limited environment, and it is difficult

to handle more complex and customized requirements. In

terms of software system, some video analysis systems mainly

consider optimizing query tasks on a single video stream

[9], [10], [11], or configuring and customizing the content

of different cameras to balance cost and efficiency [12] to

optimize overall system performance.

Edge Computing. Input filtering is a simple and important

solution to accelerate DNN model inference [4]. At the same

time, the lightweight research of deep learning [13], [14], [15]

makes it possible to run neural networks on edge devices.

Therefore, there are a series of studies that mainly consider

executing part of models or lightweight models on edge

devices with limited performance [16], [17], [18] to save

network overhead and central server resources.

Spatio-Temporal Correlation. A series of work has begun

to consider using spatio-temporal information to optimize

cross-camera analysis [19], [5]. But there are two problems

in these studies: 1) The acquisition of the spatio-temporal

information largely relies on manual marking, but complete

manual marking and modeling is often costly or impossibly.

2) The currently used spatio-temporal information considers
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fewer factors, and more information can be explored and

utilized.

Object Tracking. Cross-camera tracking tasks are mainly

divided into three sub-tasks: single-camera object detection

and tracking, cross-camera ReID, and cross-camera track-

ing. The current mainstream single-camera object tracking is

mainly divided into two categories: correlation filtering [20],

[21] and deep learning [1], [22], [23]. For the task of ReID,

good progress has been made in personnel [24], [25] and

vehicles [26], [27], but there is little research on other objects.

Cross-camera object tracking is based on the results of the first

two tasks, and uses data association [28], gaussian mixture

model [19] or spatio-temporal information [5] to assist in the

establishment of a complete motion trajectory.

V. CONCLUSION

The oilfield industrial area is a special realistic environ-

ment. In this environment, the object tracking, counting, and

liquidity monitoring of video streams have their own unique

significance and challenges. We propose LinkStream, a system

for real-time analysis on large-scale video stream to obtain

liquidity. In order to achieve this goal, we use frame filtering

and edge computing to save bandwidth and GPU occupancy,

and use the spatio-temporal correlation model to reduce system

delay. In addition, we also proposed an algorithm for real-time

accurate counting of tubing objects. The results show that the

system can perform real-time inference at a low error rate and

greatly reduce system resource overhead. In the future, we will

explore more complete spatio-temporal correlation models to

better realize cross-camera analysis.
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