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Abstract—Understanding and predicting cellular traffic at large-scale and fine-granularity is beneficial and valuable to mobile users,

wireless carriers, and city authorities. Predicting cellular traffic in modern metropolis is particularly challenging because of the

tremendous temporal and spatial dynamics introduced by diverse user Internet behaviors and frequent user mobility citywide. In this

paper, we characterize and investigate the root causes of such dynamics in cellular traffic through a big cellular usage dataset covering

1.5 million users and 5,929 cell towers in a major city of China. We reveal intensive spatio-temporal dependency even among distant

cell towers, which is largely overlooked in previous works. To explicitly characterize and effectively model the spatio-temporal

dependency of urban cellular traffic, we propose a novel decomposition of in-cell and inter-cell data traffic, and apply a graph-based

deep learning approach to accurate cellular traffic prediction. Experimental results demonstrate that our method consistently

outperforms the state-of-the-art time-series based approaches and we also show through an example study how the decomposition of

cellular traffic can be used for event inference.

Index Terms—Machine learning, prediction methods, predictive models, mobile computing, communication systems, mobile communication
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1 INTRODUCTION

WITH billions of mobile devices accessing the Internet
via 3G/4G/5G networks, cellular traffic has skyrock-

eted in the past few years. It is predicted that over 50 percent
of the global devices and connections will be mobile (e.g.,
smartphones, tablets) and the monthly global mobile data
traffic will surpass 30.6 exabytes (1018) by 2020 [1]. This trend
will continue in the foreseeable future.

Despite the volume of mobile cellular traffic data, we
have limited knowledge on its spatio-temporal patterns at
urban scale. Tremendous records of cellular traffic collected
at cell towers have been widely adopted for daily net-
work management and diagnosis. However, we argue that
the big traffic data from cell towers are also beneficial to
understand and predict urban cellular traffic, which can be
extremely valuable for individual cell towers, cellular car-
riers, and city authorities. In the coming 5G era, cell towers

can adapt themselves to the dynamics in traffic load based
on Software-Defined Networking / Network Function Vir-
tualization (SDN / NFV) technology. Accurate prediction of
cellular traffic will facilitate carriers to schedule resources to
ensure the overall quality of service and network perfor-
mance and reduce unnecessary operation cost by allocating
energy and bandwidth tightly based on the future traffic
demand. Cellular data traffic prediction also assists city
authorities to discover certain social events in time for
urban governance. For instance, city managers can take pre-
vention measures or preemptive actions for spontaneous
gatherings of people to avoid injury caused by crowd
stampede.

However, it is extremely challenging to predict mobile
cellular traffic at both large-scale and fine granularity. The
reasons are three-fold. (i) Due to the diverse network
demand of Internet-based applications (e.g., mobile videos,
location-based games, VoIP) and user behaviors (e.g., at
work, in transit, during sleep), the cellular traffic at an indi-
vidual cell tower can have a wide dynamic range. Accord-
ing to our dataset in a major city of China, the traffic
volume can easily peak at around 1 GB per hour during
rush hours (e.g., 16:00), which is 100,000 times greater than
the traffic during the least active times (e.g., 04:00) in the
same cell tower. (ii) User mobility introduces spatial depen-
dencies into the cellular traffic among spatially distributed
cell towers. Our dataset reveals that data traffic from mobile
users (i.e., entering or leaving a cell within a time interval)
can account for up to 90 percent of the entire data traffic at
cell towers in transportation hubs. We also observe that
such spatial dependencies can occur even between distant
cell towers, as efficient urban transportation easily enables
mobile users to travel across cities within half an hour. (iii)
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Geographical distribution of cellular traffic at the urban
scale is also influenced by many other factors, including
land use, population, holidays, and various social activities.
These influential factors further complicate the spatio-
temporal dependencies among cell tower traffic citywide.

Network traffic analysis and prediction have been well
studied, covering from wired Internet to cellular networks.
In the past, mainstream research has modeled traffic pat-
terns using statistics or probabilistic distribution in the time
domain [2], space domain [3], or both [4]. Although these
works provide a comprehensive understanding of the Inter-
net traffic, the outcomes cannot be utilized to predict traffic
load for individual cell tower continuously. Traffic predic-
tion is more challenging than characterization. Existing sol-
utions either totally ignore the spatial influence of cell
towers at different locations [5], or use an approximate
model (e.g., spatial aggregation [6], [7] or statistical covari-
ance [8]). These solutions fail to capture the intensive and
often long-distance spatial dependency of individual cell
towers induced by citywide user mobility, let alone the
interaction between temporal and spatial factors.

In this work, we carefully investigate the characteristics of
urban cellular traffic with a large-scale cellular data usage
dataset covering 1.5 million users and 5,929 cell towers in a
major city of China. We demonstrate that there is strong,
long-distance, and pervasive spatial dependency among cell
tower cellular traffic, which was overlooked in previous
research. To explicitly account for the spatial dependency,
we propose to decompose the total data traffic volume into
in-tower traffic and inter-tower traffic, and verify the impor-
tance of such decomposition in cellular traffic prediction. We
leverage a graphical representation to comprehensively cap-
ture the spatio-temporal correlations of cellular traffic, and
exploit graph neural network to learn an efficient spatio-
temporal model from our massive dataset. We also demon-
strate that the combination of in-tower and inter-tower traffic
patterns can be applied for network or social event inference,
which is practically helpful for mobile carriers to adjust net-
work configuration, or for city authorities to take preventive
measures. Evaluations on our massive dataset validate the
effectiveness of our graphical spatio-temporal model.

The contributions of this work are summarized as follows.

� Conceptually, we decompose cellular traffic into in-
tower and inter-tower traffic to characterize the spa-
tial dependency among cell towers, which was rarely
taken into account previously. We show the neces-
sity and benefits to account for spatial dependency
in cellular traffic prediction through measurements
on a massive dataset.

� We jointly consider temporal and spatial depen-
dency among cell towers and exploit a deep neural
network based model for cellular traffic prediction.
The model effectively parameterizes in-tower and
inter-tower traffic, and is able to learn long-distance
spatial correlations for accurate traffic prediction.
This is the first work that applies deep learning for
individual cell tower traffic prediction at urban scale
with massive real-world datasets.

� We achieve large-scale (metropolis) and fine-grained
(individual cell tower, half an hour) traffic prediction

and outperform the state-of-the-art by 13.2 percent in
Mean Absolute Error (MAE) and 17.5 percent in
Mean Absolute Relative Error (MARE). To the best
of our knowledge, our work is the first that is capable
of predicting in such scale and granularity and has
been evaluated on a real-world big dataset.

In the rest of the paper, we review related works in
Section 2 and describe our dataset and motivating observa-
tions in Sections 3 and 4, respectively. On this basis, we pro-
pose our graph-based prediction model in Section 5 and
evaluate the performance in Section 6. Section 7 finally con-
cludes this study.

2 RELATED WORK

Network traffic analysis and prediction has a long history,
from the emergence of data network several decades ago to
today, spanning from Internet [9], [10] to cellular networks
(e.g., voice call [11], [12] and SMS [13]).

In recent years, the explosive growth of mobile Internet
applications has drawn numerous research attempts to
characterize cellular traffic from both academy and indus-
try. Network traffic prediction could benefit plenty of appli-
cations. According to the sources of data traffic records,
existing works can be generally divided into two categories:
(i) data recorded by mobile devices; (ii) traces collected by
cellular operators. For the first category, phone usage infor-
mation, including locations, applications, network perfor-
mance, is automatically monitored and logged by mobile
APPs [14], [15], some of which work in a crowdsensing
manner [16], [17], [18]. The major limitation of this approach
lies in its scale; that is, the user coverage of data traces is
restricted within a group of people who install some specific
APPs on their mobile devices. As a result, the statistics
obtained cannot truly reflect the whole set of users associ-
ated with a cellular tower, not to mention the global charac-
teristics of a large scale cellular network. On the other hand,
in the dataset collected by cellular operators, users are pas-
sively monitored without awareness. In fact, mobile carriers
are able to record a wealth of information in many aspects
[19], [20], [21], depending on where and in which layer the
monitors are placed in cellular networks. Datasets of the
second category are often employed for analyzing network-
wide statistics with a large user population. Our work, rely-
ing on the dataset collected from citywide cell towers, falls
into the second category.

Most previous works on cellular traffic focus on how to
characterize and understand their statistics and patterns
under the circumstance of various temporal and spatial fac-
tors, device types, application categories, user groups, etc.
From the time domain, the traffic dynamics of IP traffic can
be well captured by Markov models [2]. An interesting fact
from [22] is that only five basic temporal patterns of traffic
exist among cell towers in a city and each of the pattern
maps to one type of geographical locations related to urban
ecology. This branch of researches focuses mostly on tempo-
ral variations without spatial relationship of cells at different
locations. From the space domain, Gotzner et al. [3] breach
the homogeneous assumption in regular spectrum freque-
ncy analysis and propose to model the spatial inhomogene-
ity of real cellular traffic with log-normal distributions. [5]
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demonstrates that the spatial distribution of the traffic den-
sity can be approximated by the log-normal or Weibull dis-
tribution. Furthermore, [4] finds that the mobile traffic loads
follow a trimodal distribution, which is the combination of
compound-exponential, power-law and exponential distri-
butions, in terms of both spatial and temporal dimension.
[23] analyzes the application-level traffic and demonstrates
that the traffic at a service or application has a-stable mod-
eled property in the temporal domain and the sparsity in the
spatial domain. These approaches provide comprehensive
understanding of cellular traffic, e.g., temporal dynamics
and spatial inhomogeneity. However, it still has a long away
to realize traffic prediction.

For the more challenging problem of prediction, by treat-
ing data traffic of cell towers as a time series, the main-
stream solutions employ time domain data analysis and
modeling, such as AutoRegressive Integrated Moving Aver-
age (ARIMA), Markov Decision Process (MDP) [24] and
Holt-Winters method[25], stochastic process models, Kal-
man filtering, etc.

Applying statistical covariance functions, a recent work
[8] considers temporal and spatial factors simultaneously,
which is the most similar to our work. However, the traffic
transfer among cell towers caused by human mobility is not
taken into account. Another attempt [6] models the spatial
correlation by clustering nearby cell towers with the same
traffic pattern into groups and predicts aggregated traffic
for each group. Such relaxation in space domain neither
captures spatial correlation of faraway cell towers, nor pro-
vides useful results for individual cell tower. Recently,
more advanced machine learning techniques are utilized
for cellular traffic prediction [7], [26], [27] where spatial
dependencies are usually learned by Convolutional Neural
Networks (CNN). However, these methods only work with
grid-based region partition, which is unpractical for cellular
network management. We adopt an upgraded version of [6]
as the state of the art comparison in our evaluation, via
replacing Elman neural network used in [6] with an up-to-
date Long short-term memory (LSTM) neural network. Dif-
ferent from these two similar works, our proposed solution
explicitly models spatio-temporal dependency from inter-
tower and in-tower traffic and predicts cellular traffic at a
large scale and fine granularity, through a neural network
that can learn from a graph structure.

The locations of people are estimated by meticulously
designed schemas in both indoor context [28], [29] and out-
door context [30], which can be applied to understanding
human mobility. The footprint of mobile devices recorded by
cellular network has been widely used to understand human
mobility [31], [32], [33] and predict human’s location [34],
[35], [36]. Different from these works, our work focus on peo-
ple transferring between regions and analyze network traffic
consumed by them.We believe thatmore fine-grained human
mobility model will benefit network traffic prediction and we
leave thiswork for future to further explore.

3 BACKGROUND AND DATA SET

This section presents the architecture of a typical cellular
network monitoring system and gives an overview of our
dataset.

3.1 Data Monitoring in Cellular Networks

Fig. 1 shows the architecture of a typical cellular network
monitoring system. To facilitate network management, a
monitoring system is deployed for operators to analyze
data traffic, monitor network performance and detect anom-
alies. The monitoring system consists of a detector and a cen-
tral. The detector is deployed in the packet core and the
central is deployed in the Network Operations Center
(NOC). Every packet sent by a mobile device will be moni-
tored on the interface between the Packet Data Serving
Node (PDSN) / Serving Gateway (S-GW) and Home Agent
(HA) / Packet Data Network Gateway (P-GW) in CDMA
and LTE networks. The monitoring system records impor-
tant information for network diagnosis and forensics. Each
record contains bidirectional flow information with the
following key fields: source / destination pair by IP and /
or International Mobile Station Equipment Identification
(IMEI) / International Mobile Subscriber Identification
(IMSI) or Network Access Identifier (NAI) / Electronic
Serial Number (ESN) / Mobile Station Identifier (MSID),
application(s) and wireless network resources consumed
(e.g., traffic volume, airtime, connection setup counts).

3.2 Dataset Description

Our dataset was collected by a major cellular carrier in a big
city of China as a large structured flow-level data table. Each
entry in the table records the user ID, the flow create time, the
flow connected cell tower ID, App ID, device type ID, uplink
traffic and downlink traffic. To protect the privacy, (i) The
user ID is anonymized by hashing the IMEI / IMSI which is
unique for each device. (ii) All of the researchers have been
authorized by the cellular network operator to utilize the
dataset for research purposes, and are bounded by strict non
disclosure agreements. (iii) We store all the data in a secure
off-line server and only the aggregated traffics for cell towers
are accessible for our researchers. Application types are classi-
fied by analyzing the HTTP header, the host name and HTTP
referrer for HTTP packages and the host name for HTTPS
packages. In our study, we exploit downlink traffic for analy-
sis. Table 1 summarizes the basic statistics for the dataset.
Fig. 2 visualizes all available cell towers in our dataset.

Since each record corresponds to each flow between the
devices and the cellular towers whenever active or passive
network activities, the dataset is much fine-grained and cov-
ers people in the whole city. To the best of our knowledge,
the dataset is the one of the largest urban-scale cellular traf-
fic dataset in terms of the number of mobile users and cell
towers. The wide coverage in mobile users and cell towers

Fig. 1. An illustration of cellular network architecture and data monitoring
system.
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promises to capture comprehensive varieties and spatial
dynamics in cellular traffic patterns.

3.3 Preprocessing

For better capturing the citywide traffic pattern, we prepro-
cess our dataset in three steps: (i) Some records in our data-
set are not complete (i.e., missing user ID or cell tower ID),
we remove these records from the dataset. (ii) Note that
devices outside the city may also be recorded in the dataset
due to the ISPs mobile roaming policy. This portion of
mobile records is also removed by checking the coordinates
of the cell towers. (iii) As we aim to predict cellular traffic
for each individual cell tower at a granularity of half an
hour, the preliminary aggregation of the downlink traffic is
done according to each cell tower ID and user ID for every
half an hour, as a result, we could aggregate the traffic
much faster according to our applications.

4 PRELIMINARY OBSERVATION AND MOTIVATION

4.1 Spatio-Temporal Distribution of Cellular Traffic

Fig. 3 shows the spatial distribution of cellular traffic (bytes
per half-hour per km2) at different times (04:00, 10:00, 16:00,
00:00) on June 15th, 2016, a weekday. Specifically, cell tow-
ers in the city center and some industry areas exhibit heavy
cellular traffic throughout the day. Overall the cellular traf-
fic before dawn (04:00) is low as most residents in the city
are sleeping. At 10:00 the traffic at most areas starts to
increase as most people start working. We observe intensive
cellular traffic widespread through the city at 16:00, indicat-
ing people are involved in diverse activities and are highly
mobile. Surprisingly, we find high volume of cellular traffic
even at midnight. The reason might lie in the fact that it is a
metropolis and there can be rich night life during summer.

Further, we examine the correlations among cell towers
using the Moran’s I [37], which is a well-known measure of
spatial autocorrelation. Formally, let xtðciÞ denote the traffic
of a cell tower ci at time t, then the definition of Moran’s I is

IðtÞ ¼ nP
i;j wij

Pn
i¼1

Pn
j¼1 wijðxtðciÞ � xtÞðxtðcjÞ � xtÞPn

i¼1ðxtðciÞ � xtÞ2
; (1)

where wij ¼ 1
di
when the distance of ci and cj is less than 2

kilometres, di is the degree of ci. For a normalized weight

matrix (i.e.,
P

j wij ¼ 1), values significantly below �1
N�1 indi-

cate negative spatial autocorrelation and values signifi-

cantly above �1
N�1 indicate positive spatial autocorrelation.

Fig. 4 shows the values of Moran’s I of cell traffic for six
days. As shown, almost all the Moran’s I values are greater
than 0.2, indicating positive spatial autocorrelation.

4.2 Characterizing Cell Tower Traffic Using
in-Tower and Inter-Tower Traffic

Existing solutions rarely consider data traffic mobility
induced by human mobility, which plays a critical role in
prediction according to our measurement. To understand
the spatio-temporal varieties of cell tower traffic, we pro-
pose to distinguish in-tower and inter-tower traffic. Specifi-
cally, instead of considering the traffic of a cell tower ci at
time t (denoted as xtðciÞ) as a whole, we propose to decom-
pose xtðciÞ into evisein-tower traffic xAt ðciÞ and inter-tower traf-
fic xB

t ðciÞ, where A is the set of mobile devices residing
within the coverage of cell tower ci, and B stands for the set
of mobile devices just entering the coverage of ci from
another cell tower. Formally, let PtðciÞ be the set of mobile
devices at cell tower ci at time t. Then xtðciÞ ¼ xA

t ðciÞþ
xBt ðciÞ, where A ¼ PtðciÞ \ Pt�1ðciÞ and B ¼ PtðciÞ n Pt�1ðciÞ.

In particular, if a mobile device traverses several cells in a
unit time interval (i.e., half an hour in our case), it will be
associated with ck and put into the set P ðckÞ, where ck is the
last cell along its trajectory. Accordingly, its traffic during
the time interval will be put on the last cell entirely.
This approximation is feasible since the most devices (i.e.,
82.8 percent) only visit one or two cell in a unit time interval
as show in Fig. 6, and the induced error is ignorable com-
pared with the traffic of a cell tower.

Fig. 5 shows the normalized hourly traffic characteristics
of three representative cell towers. As shown, the total traf-
fic of all the three cell towers exhibits dramatic temporal
dynamics within the day, and the three cell towers demon-
strate distinctive in-tower and inter-tower traffic patterns.
In the first type of cell towers (Fig. 5a), in-tower traffic

TABLE 1
Dataset Description

Statistics Value

Flow Records 1:7� 1010

Cell Towers 5:9� 103

Covered Users 1:5� 106

Covered Apps 7:0� 102

Covered Area 1:0� 104 km2

Date June 5th-18th, 2016

Fig. 2. An illustration of cell towers in our cellular dataset.

Fig. 3. Spatial distribution of urban cellular traffic at different times of a day.

WANG ET AL.: SPATIO-TEMPORAL ANALYSIS AND PREDICTION OF CELLULAR TRAFFIC IN METROPOLIS 2193

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:38:41 UTC from IEEE Xplore.  Restrictions apply. 



overwhelms the entire cellular traffic, indicating the total
traffic volume is dominated by the Internet access behav-
iours of a fixed group of users. In the second type of cell
towers (Fig. 5b), inter-tower traffic takes up a notable por-
tion of the total traffic in the daytime. These type of cell tow-
ers are likely to be located in places with continuous and
intensive mobility in the daytime, e.g., shopping malls. In
the third type of cell towers (Fig. 5c), inter-tower traffic
surges during the morning and evening rush hour and
lunch time. A cell tower at public transportation hubs
within the city may demonstrate such a traffic pattern.

Compared with the first type of cell towers, the data traffic
of the last two types of cell towers is largely determined by
inter-tower traffic, which is induced by mobility. Mobility
from cell to cell introduces spatial correlations among cell
tower traffics. As a consequence, when predicting the traffic
of one individual cell tower, it is important to take into
account the spatial distributions and dependencies of cellular
traffic of cell towers at different locations. In fact, as we will
show in the evaluation, the state-of-the-art time-series based
cellular traffic prediction approaches [38], [39] performpoorly
for the latter two types of cell towers, as they ignore the spatial
correlations among cell towers induced bymobility.

5 SPATIO-TEMPORAL MODELLING FOR TRAFFIC
PREDICTION

Motivated by the observations from the above in-tower and
inter-tower traffic pattern analysis, in this section, we pro-
pose a deep graph model for fine-grained (individual cell
tower, half-hour granularity) cellular traffic prediction. Fur-
thermore, we decompose cellular traffic into explainable
components and design an inference scheme to discover
network or social events.

5.1 Problem Statement

Formally, our cellular traffic prediction problem can be for-
mulated as follows. Let C ¼ fciji ¼ 1; . . . ; Ncg denote the set

of cell towers, where ci is the ith cell tower, and Nc is
the number of cell towers. Let xtðciÞ denote the traffic of a
cell tower ci at time t. Given a set of cellular traffic
fx1; . . . ; xt�1g, our goal is to predict xtðcÞ for all c 2 C. As
demonstrated in Section 4.2, the majority of the total data
traffic can be inter-tower traffic induced by mobility. Thus it
is necessary and beneficial to account for spatial dependen-
cies for accurate cellular traffic prediction. That is, we
assume xtðciÞ is dependent on both fxkðciÞg (temporal fac-
tor) and fxkðcjÞ; j 6¼ ig due to user mobility (spatial factor),
where k ¼ 1; . . . ; t� 1.

5.2 Graph Representation of Spatio-Temporal
Dependencies

Wemodel the spatio-temporal dependencies of cellular traf-
fic using a graph representation. Specifically, given a
directed graph G ¼ ðV;EÞ, we denote each vertex c 2 V as a
cell tower, and each edge e ¼ ðc; dÞ 2 E , where d 2 V , as
the spatial dependency of a cell tower c on d. The neigh-
bours of c, which have incoming edges or outgoing edges to
c, are represented by NBRðcÞ, and COðcÞ stands for the
edges (both incoming and outgoing) connected to c. Given
an edge e ¼ ðd; cÞ 2 COðcÞ, its weight wðeÞ is defined as the
total data traffic vector of mobile devices that move from d
to c at each time t, i.e., ½x1ðd ! cÞ . . .xtðd ! cÞ . . .�.

Due to the large scale of our dataset (5,929 cell towers), a
complete directed graph can contain huge amounts of edges
(approximately 2 million), thus hindering efficient learning
of model parameters. Besides, in some edges, wðeÞ only has
little number of nonzero items, which should be regarded
as noise. Therefore we prune edges with small weights to
speed up the learning process and empirically set a thresh-
old of nonzero count in we to balance prediction accuracy
and computing efficiency.

Fig. 5. An illustration of three typical in-tower and inter-tower cell tower data traffic characteristics. (a) In-tower traffic dominant, collected from a cell
tower in a residential area; (b) inter-tower traffic consistently notable during the daytime, collected from a cell tower in a shopping mall; and (c) inter-
tower traffic surges at certain times, collected from a cell tower in a transit station.

Fig. 4. Moran’s I of cell traffic for six days.

Fig. 6. CDF of the number of cell towers mobile devices traverse in a unit
time interval.

2194 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:38:41 UTC from IEEE Xplore.  Restrictions apply. 



One important observation in our study is that the inter-
tower traffic is highly correlated with user mobility in the
city. Fig. 8 shows the spatial distribution of the correspond-
ing inter-tower traffic (per half-hour) at 04:00, 10:00, 16:00
and 00:00. The line width of each edge shows the volume of
the corresponding inter-tower traffic. We omit edges of dis-
tances shorter than 3 km to investigate whether there is
extensive mobility between distant cell towers.

Fig. 7 plots the spatial distribution of user mobility
within the city at 04:00, 10:00, 16:00 and 00:00. User mobil-
ity is quantified by summing the total number of mobile
devices travelling between pairs of cell towers within
each half-hour unit, and is represented by a directional
edge with its line width showing the intensity of user
mobility. We omit edges of distances shorter than 3 km to
investigate whether there is extensive mobility between
distant cell towers.

Fig. 8 shows the spatial distribution of the corresponding
inter-tower traffic (per half-hour) at the same times of the
day. The line width of each edge shows the volume of the
corresponding inter-tower traffic.

Comparing the user mobility and the corresponding
inter-tower traffic, we find that (1) both the intensity and
geographical distribution of user mobility are tightly corre-
lated to inter-tower traffic; and (2) inter-tower traffic
between two distant cell towers can be dependent because
there may be intense user mobility.

The first finding justifies our decomposition of cellular
traffic into in-tower traffic and inter-tower traffic to charac-
terize spatial dependencies induced by user mobility. The
second finding indicates that the spatial dependencies
among cell tower traffic may not necessarily be local (e.g.,
within the same residential district). The rapid development
of urban transportation has made it easy to transit among
urban transportation hubs (e.g., airport, train stations), and
popular locations (e.g., hot tourist attractions) within half
an hour. Such fast urban-scale mobility introduces enor-
mous long-distance spatial dependency to cell towers
within the whole city. Thus the neighborhood defined in
our graph representation is based on device mobility, rather
than geographical distances among cell towers.

5.3 Learning Spatio-Temporal Dependencies
via Graph Neural Networks

To efficiently learn the spatio-temporal dependency in cell
tower traffic, we adopt a Graph Neural Network (GNN)
[40] model. A GNN is a general neural network architecture
defined on a graph structure G ¼ ðV;EÞ. Nodes v 2 V take
unique values from 1; . . . ; jV j representing each cell tower
in our model, and edges are pairs e ¼ ðv; v0Þ 2 V � V . Since
inter-tower traffic is directional, we denote ðv; v0Þ as a
directed edge v ! v0. In a GNN, each node v is assigned
with a hidden state named node representation, which is
denoted by hv 2 Rr, where r is the dimension of node rep-
resentation. Node representation hv models the spatio-
temporal features for each node v and is to be trained, which
will be explained later.

To separately encode in-tower traffic and inter-tower traffic
into a GNN, we assign in-tower traffic as the labels for each
node, and inter-tower traffic as the labels of each edge. Specifi-
cally, each node v is associated with a node label sequence
xAðvÞ 2 Rl, where l is the history data length for prediction
and xA is the identifier for the node labels. Similarly, each
edge e is associated with an edge label sequence xBðeÞ 2 Rl,
where xB is the identifier for the edge labels. Afterwards, it is
natural to use the in-tower traffic series to represent the node
sequence, i.e., xA

t ðvÞ ¼ ðxA
t�lðvÞ; xA

t�lþ1ðvÞ; . . . ; xA
t�1ðvÞÞT , and

the inter-tower traffic series to represent the edge sequence,
i.e., xB

t ðeÞ ¼ ðxB
t�lðeÞ; xB

t�lþ1ðeÞ; . . . ; xB
t�1ðeÞÞT . In the above

modelling, the GNN captures both temporal dependency of
individual cell towers and spatio-temporal dependency
among cell towers network-wide of an order of l, which is an
important parameter for tuning.

For ease of presentation, we overload notations and let
xAðSÞ ¼ fxAðsÞjs 2 Sg; hðSÞ ¼ fhðsÞjs 2 Sg; xBðSÞ ¼ fxBðsÞj
s 2 Sg, and the function InðvÞ ¼ fv0jðv0; vÞ 2 Eg returns the
set of predecessor nodes v0 with v0 ! v. Analogously,
OUT ðvÞ ¼ fv0jðv; v0Þ 2 Eg is the set of successor nodes v0

with edges v ! v0. The set of all nodes neighboring v is
NBRðvÞ ¼ INðvÞ [OUT ðvÞ, and the set of all edges incoming
to or outgoing from v isCOðvÞ ¼ fðv0; v00Þ 2 Ejv ¼ v0jjv ¼ v00g.

A GNN model maps the graphs to the outputs (predic-
tion of cellular traffic) in two steps: (1) a propagation step

Fig. 7. Distribution of user mobility at different times of a day. An edge with gradient color from white to dark blue represents the direction of user
mobility between a pair of cell towers. The line width of the edge shows the intensity of user mobility.

Fig. 8. Distribution of inter-tower traffic volume at different times of the same day. The line width of each edge represents the volume of inter-tower
traffic between a pair of cell towers, aggregated by half an hour.
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that computes the node representations hðvÞ for each node
v, and (2) an output model oðvÞ ¼ gðhðvÞ; xAðvÞÞ that maps
the node representations (spatio-temporal features) and the
corresponding node label sequence (cellular traffic history
of the target cell tower) to an output oðvÞ for each v 2 V .

Propagation Step. The propagation step is an iterative pro-
cedure that propagates node representations. Initial node

representations hð1ÞðvÞ are set to arbitrary values. Then
each node representation is updated following the recur-
rence below until convergence, where i denotes the time-
step, f� denotes a function implemented by a multi-layer
neural network

hðiÞðvÞ ¼ f� xAðvÞ; xAðNBRðvÞÞ; xBðCOðvÞÞ;
�

hði�1ÞðNBRðvÞÞ
�
:

(2)

Output Model. An output model is defined per node and

is a differentiable function oðvÞ ¼ gðhðvÞ; xAðvÞÞ. In our
work, we adopt graph-level regression for the output model
instead of mapping output g for each node to emphasize the
spatial dependency among cell towers. To train a GNN, all
parameters (i.e., node representations hv and output model
g) are learned jointly using gradient-based optimization
such as Almeida-Pineda algorithm[41], [42], which runs the
propagation step to convergence and computes gradients
based on the converged solution.

In this work, we train a GNN model for each cell tower.
f� is implemented by recurrent neural networks and g is
implemented by full-connected neural networks. The model
parameters will be carefully tuned for performance which
will be explained in Section 6. To predict xðvÞ, we feed input
xAðvÞ, xAðNBRðvÞÞ, xBðCOðvÞÞ into the GNN model. Since
the traffic prediction model for each cell c only depends on
a small set of nodes and edges, the training process for all
cell towers can be easily distributed and paralleled.

Fig. 9 shows an illustrative example of the encoding
network of our model to predict the cellular traffic for
cell tower c0. The figure on the left shows the graph

representation of cell tower c0 and its neighbours fc1; c2; c3g.
The in-tower traffic of each cell tower will be encoded into
ci and the inter-tower traffic will be encoded into the edges
fe1; e2; e3g. The figure on the right describes the GNN
model. f� and g are implemented by two-layer full-
connected neural networks in this example. Specifically,
node representations fhðciÞg, i.e., the spatio-temporal fea-
tures, will be learned for each cell ci in the propagation step
using f� based on the in-tower traffic XA and inter-tower
traffic XB of all the nodes and edges connected to ci. Then
the node representation hðc0Þ, together with XAðc0Þ, will be
fed into the output model g to get the prediction result
Oðc0Þ, i.e., the predicted cellular traffic for c0.

5.4 Event Inference

In addition to data traffic prediction, the decomposition of
in-tower (xA) and inter-tower (xB) traffic also benefits min-
ing network (or social) events.

We decompose the cellular traffic x into 3 explainable
components: a seasonal component s capturing the periodic
pattern; a trend component u capturing the offset from the
periodic pattern in a period, and a residual component r
capturing the instantaneous changes. That is, given a pre-
diction x for cellular traffic using the GNN model, we
rewrite x ¼ sþ uþ r with the ratio-to-moving-average
method [38], and we conduct the decomposition for both
the in-tower traffic and the inter-tower traffic, i.e.,

xA ¼ sA þ uA þ rA

xB ¼ sB þ uB þ rB:

In particular, rA reflects the instantaneous traffic variation
caused by mobility-independent online events, such as an
online live show or an Internet failure, while rB corresponds
to the instantaneous traffic changes caused by mobility-
dependent social events, e.g., a sports game, pop-music con-
certs, presidential campaign speech, large rallies, traffic
jams, etc. Detecting such events will be beneficial for

Fig. 9. An illustration of the cellular traffic prediction process for cell tower c0 using GNN. The left shows the graph representation, where c0 has inter-
tower traffic xBðeiÞ from fc1; c2; c3g. The right describes the GNN model. For each cell ci, the in-tower traffic XA and the inter-tower traffic XB of all
the nodes and edges connected to ci are input into f� (propagation step) to learn spatio-temporal features. Then, the feature learned and the in-tower
traffic of c0 are fed into g (output model) to get the prediction Oðc0Þ, i.e., the predicted traffic for c0.
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network troubleshooting and optimization as well as for
urban governance and taking necessary prevention actions.

For mobility-independent online events, we take it as an
event case when rA is larger than a threshold (e.g., 1 GB per
hour). Then we calculate the proportion of traffic pi con-
sumed by top-k users who use more traffic. The result in
Fig. 11a shows that for almost 55 percent cases, only one
user consumes more than 80 percent traffic and the number
goes to 75 percent when considering top-5 users, illustrating
that for most mobility-independent online events, the
minority contributes the most of traffic. Further, we visual-
ize the application used by the minority. Fig. 11b displays
that 62.3 percent of mobility-independent online events
dominated by the minority result from watching videos,
8.9 percent from operation system (i.e., system update) and
3.4 percent from Cloud Storage.

Mobility-independent online events caused by the
minority is complex to analyze and predict because of com-
plex individual behaviors. For this reason, we explore
mobility-independent online events caused by group users.
After filtering out the events caused by the minority, We
collect POIs of the locations of these events. POI is a specific
point location of a certain function such as restaurant and
school. The distribution of an areas POI reflects its function.
The POI data are available from the API of Baidu Map,
which is one of the main map service providers. The POIs
collection are categorized into, five main types of POI,
including resident (16.6 percent), transport(6.4 percent),
education (48.0 percent), business(15.3 percent) and enter-
tainment(13.7 percent). The POIs distribution implies that it
is much more possible for areas like schools to generate
mobility-independent online events. Further, we visualize
the locations of mobility-independent online events caused
by group users on map as red dots and the school areas as
blue blocks in Fig. 11c. As we can see, the locations of online

events are highly related to the school regions spatially,
which enlightens the carriers that more attention should be
paid in school regions to avoid the network failure caused
by mobility-independent online events.

For mobility-dependent social events, we show an exam-
ple of event inference based on traffic patterns in Fig. 10.
From the information of rA and rB, we can observe that the
traffic patterns of both rA and rB are notably different in the
first two days (0-48h). On June 5th (0-24h), 2016, rB surged
twice during morning and evening and the data volume
reached 525 percent compared with normal days (the latter
four days). Soon following rB’s changes, rA also experienced
large increases twice on June 5th, 2016, with a data traffic
escalation of 3,930 percent. It can be observed that both rA

and rB changed rapidly and it took less than half an hour
from the starting to the ending of the dramatic traffic shift.
This means the sampling interval of half an hour fails to
capture the details of changes. This is one of the most impor-
tant reasons why mobile traffic prediction is extremely
challenging.

According to our previous analysis, rB’s changes can be
attributed to user mobility. Thus, we infer that there were
people gathering at 10 a.m. and 5 p.m. and people dispersing
at 1 p.m. and 9 p.m. on June 5th, 2016. On the other hand, the
volume of rA shows that people accessed the Internet heavily
between 10 a.m. to 1 p.m., and between 3 p.m. and 9 p.m.,
respectively. This observation indicates that there was either
a hot online issue that many people followed through the
Internet or a local event that people were willing to share on
the Internet. Combining the information of both rA and rB,
we believe that the second possibility is more likely.

Through thoroughly search on the Internet, we find that
there was a “shake run” activity with participants signing
in at 12 p.m. and a concert of two pop music stars starting at
4 p.m. on June 5th. This verifies our event inference.

Fig. 10. An example study of cellular traffic based event inference. We detect the start of the online registration of a large activity at 12 p.m. and a
people gathering event due to a concert at 4 p.m. on June 5th.

Fig. 11. (a) CDF of pi. (b) Apps used by top-1 users. (c) The distribution of events and the locations of schools.
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We believe that event inference based on traffic patterns
is valuable but challenging. The difficulty lies in the lack of
ground-truth information of various social events at city-
wide scale. The city where our dataset is collected is both an
ancient and modern metropolis with a large population of
more than 10 million. Numerous activities take place each
day, which obstructs our search of events corresponding to
traffic variation. It is common that we succeed in detecting
abnormal traffic patterns but fail to verify our inference,
because such activities may not be posted online, or its
information hides in the ocean of Internet data and we are
looking for a needle in a haystack. As a result, we are unable
to conduct extensive evaluation for event inference at the
current stage. However, the findings so far motivate us a lot
and we will continue our exploration in this direction and
leave it as a future work.

6 EVALUATION

In this section, we evaluate the performance of our spatio-
temporal prediction model and compare it with the state-of-
the-art time-series based prediction approaches.

6.1 Experimental Settings

6.1.1 Dataset

We evaluate the performance of our cellular traffic predic-
tion model on the dataset discussed in Section 3.2. It covers
comprehensive cellular data usage traces of 1.5 million users
monitored at 5,929 cell towers from June 5th to 18th, 2016. As
we aim at a temporal resolution of half an hour, we aggregate
the traffic at each cell tower every half an hour. We extract
the dependency relationshipG as Section 5 describes. Fig. 12
illustrates the degree distribution of G. From the figure, we
can see that most cell towers (about 90 percent) have less
than 40 neighbors. We choose data from the last two days as
the testing data, and all data before that as training data.

6.1.2 Baselines

We compare the performance of our proposed GNN with
Decomposed Cellular Traffic model (GNN-D) with the fol-
lowing baselines.

NAIVE: The NAIVE method simply predicts the traffic at a
certain time based on the traffic at the same time of the
last day. For instance, its prediction for 15:00 - 15:30,
June 17th, 2016 is the traffic volume for 15:00 - 15:30,
June 16th, 2016.

ARIMA: Auto-Regressive Integrated Moving Average
(ARIMA) model [38] is commonly used for modelling

time series behaviours and has been widely adopted in
time series prediction [43].

LSTM: Long-Short TermMemory (LSTM) [39] is a Recurrent
Neural Network (RNN) architecture. Unlike traditional
RNNs, LSTM uses “gates” instead of activation func-
tions, as a result, LSTM could maintain state as well as
output. Since state can be more persistent than output,
LSTMs are able to capture longer term memory in com-
parison with traditional RNNs.

HW: Holt-Winters (HW) is used for exponential smoothing
to make short-term forecasts by using additive or multi-
plicative models with increasing or decreasing trend
and seasonality.

GNN-A: We apply the GNNmodel with Aggregated cellular
traffic (GNN-A) as a basic GNN model. In GNN-A
model, we assign the entire cellular traffic without
decomposition as node labels and don’t absort edge
labels into the model.

6.1.3 Metrics

We evaluate the performance of cellular traffic prediction
based on two metrics: Mean Absolute Error (MAE) and
Mean Absolute Relative Error (MARE)

MAE ¼ 1

jT j � jCj
X
i;j

jxiðcjÞ � x̂iðcjÞj (3)

MARE ¼ 1

jT j � jCj
X
i;j

jxiðcjÞ � x̂iðcjÞj
xiðcjÞ ; (4)

where jT j is the size of the testing set, i 2 ½1; jT j� is the index
of each testing sample, j 2 ½1; jCj� is the ID of each cell, and
x̂iðcjÞ denotes the prediction for xiðcjÞ.

We choose these two metrics to jointly evaluate the
prediction performance of traffic volumes considering
the wide dynamic range (from 104 bytes to 109 bytes) of
our dataset.

6.1.4 Model Training

We implement the ARIMA model using the “forecast” R
package [44]. The package automatically selects the best
model parameters based on the given order constraints. We
implement the LSTM model using the “Keras” python
library [45]. Fig. 13 shows the structure of the LSTM model
used in our evaluation. We carefully tune the model param-
eters and choose 5 neurons for each LSTM layer with a 0.2
dropout rate and linear activation function, and we use the
history of the last 3 time units for the best performance. We
implement HW model using the “stats” R package. We
implement our GNN-A and GNN-D model using the GNN
toolbox [46]. We choose two propagation layers and two
output layers. Before training, features and targets will be
normalized by max normalizer. We set the GNN parameters
as r ¼ 2; l ¼ 3, and use 5 hidden neurons for each layer of
the propagation model with linear activation function and 6
neurons for each layer of the output model with tanh activa-
tion function.

Fig. 12. The degree distribution of extracted graph from our cellular
dataset.

Fig. 13. Architecture of LSTM model used for evaluation.
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To evaluate whether our GNN model has been trained
properly, we monitor the training process (1,000 epochs)
with qualitative metrics as shown in Fig. 14.

Fig. 14a plots the saturation coefficients during our train-
ing. Saturation coefficient is defined as the mean square
error of the hidden layer’s output in our experiment. For
tanh layers, a hidden unit is saturated if the saturation coef-
ficient is close to 1 or �1. For linear models, certain degree
of saturation is essential, while for non-linear models, satu-
rated layer will decrease both the information capacity and
the learning ability of a neural network [47]. We monitor
the saturation coefficients for both the propagation step
(denoted as “propagationNet”, linear) and for the output
model (denoted as “outputNet”, non-linear). As shown, the
saturation coefficients for the propagationNet and the out-
putNet are both in the range ð0:01; 0:05Þ, indicating the
training process is nonmalignant.

Fig. 14b shows the stability coefficients during the train-
ing process. Stability coefficient measures the difference of

outputs between successive epochs, i.e.,

P
jðoðtÞ�oðt�1ÞjP

joðtÞj , and

indicates whether the training converges. As shown, the sta-
bility coefficient gradually drops to nearly zero after 400
epochs, indicating that the training process will converge.

Fig. 14c shows the normalized mean squared errors
(Normalized MSE) on traffic prediction using the validation
set. As shown, after about 80 epochs, both the learning error
and the validation error converge, demonstrating the effec-
tiveness of the training process.

6.2 Prediction Performance

Table 2 summarizes the traffic prediction performance of
our GNN-D methods and the baselines. GNN-D consis-
tently and significantly outperforms all the baselines in both
metrics. Specifically, GNN-D achieves 62.2, 19.7, 16.3, 13.2,
18.5 percent smaller MAE than NAIVE, ARIMA, LSTM,
HW and GNN-A, respectively, and demonstrates 43.7, 62.6,

17.5, 39.2, 14.3 improvement in MARE than NAIVE,
ARIMA, LSTM, HW and GNN-A, respectively. Fig. 15
shows a comparison between prediction results and the
ground truth of a sample region. We can see that the predic-
tion results well match the trend of the actual values, which
indicates the high performance of our method.

For more insights on the applicability of our method, we
investigate the impact of different factors on the cellular
traffic prediction performance as follows.

Impact of Cellular TrafficVolume. Fig. 16 plots the cumulative
distribution function (CDF) of per half-hour traffic volume in
our dataset, which can be fitted by a lognormal mixtures dis-
tribution with three components. The Kolmogorov-Smirnov
test (K-S test) is used to check for goodness-of-fit of empirical
data to test distributions, which indicates that the distribution
of log-normal mixtures is well accepted with p-value ¼ 0:58.
As shown, both light traffic (< 106 bytes) and heavy
traffic (> 109 bytes) take up only a small percentage, but can
be more difficult to predict accurately. To evaluate the predic-
tion performance for different traffic volume, we divide the
testing set into four subsets based on traffic volume levels:
½0; 106Þ; ½106; 107Þ; ½107; 108Þ; ½108;þ1�.

Fig. 14. Quantitative monitoring of the training process in 1,000 epochs. (a) Saturation coefficients of the models in both propagation and output
steps. (b) Stability coefficient. (c) Normalized MSE showing the convergence of training.

TABLE 2
Overall Prediction Performance

Method MAE (�107 bytes) MARE

NAIVE 2.784 1.402
ARIMA 1.309 2.114
LSTM 1.255 0.958
HW 1.210 1.301
GNN-A 1.289 0.922
GNN-D 1.051 0.790

Fig. 16. PDF of half-hour data traffic in our dataset.

Fig. 15. Prediction vs. the ground truth for a sample cell tower.
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Figs. 17a and 17b present the prediction performance for
different traffic volume levels. We make the following
observations from the results. (i) For all prediction methods,
MAE increases with the traffic volume while MAPE
decreases with the traffic volume. (ii) GNN-A performs sim-
ilarly to LSTM. It could be explained that the propagation
model in GNN-A is equivalent to a basic recurrent neural
network. Without traffic decomposition, the neural network
has similar encoding capacity for spatial time series to
LSTM. (iii) GNN-D method outperforms the baselines in all
levels of traffic volume. The results indicate that even with
an imbalanced training dataset, our method still outper-
forms others in predicting extremely light or heavy traffic
and it is applicable to traffic volumes spanning a wide
dynamic range.

Impact of Spatial Dependency. This experiment demon-
strates the prediction performance of our method for cell
tower traffic with different levels of spatial dependency. We
quantify the spatial dependency of cell towers using central-
ity, which is a graph term to measure the importance of ver-
tices. There are various ways to define centrality such as
closeness centrality, betweenness centrality, Eigenvector
centrality and PageRank centrality [48]. PageRank centrality
measures centrality by considering three distinct factors: (i)
the number of links it receives, (ii) the link propensity of the
linkers, and (iii) the centrality of the linkers. Thus PageRank
centrality is the most suitable to measure the levels of spa-
tial dependency of each cell tower. Fig. 18 shows the distri-
bution of PageRank centrality in the main district of the city
where our measurements were collected. Each point repre-
sents a cell tower and its color stands for the value of its
PageRank centrality. We select three cell towers with high
PageRank centrality, denoted by ‘A’, ‘B’ and ‘C’ in Fig. 18.
After checking the city maps, we find that cell tower A is
located at a railway station, cell tower B is within a major
shopping mall, and cell tower C is in a university. All of
them are busy and crowded locations with high user mobil-
ity. In all of the three cell towers, inter-tower traffic takes up
a large portion of the total traffic volume and we expect
high spatial dependency of their cellular traffic on the
neighbouring cell towers.

After showing that PageRank centrality can act as an
indicator for spatial dependency of cellular traffic, we plot
the prediction performance of our method for cell towers
within different PageRank centrality levels in Figs. 17c and
17d. As shown, with the increase of PageRank centrality
(and thus spatial dependency), MAE increases slightly while
MAPE decreases significantly for all the prediction schemes.
Considering that cells with high spatial dependency usually
have high traffic volume, the slightly increased MAE in fact
leads us to conclude that our method is more accurate for
highly spatial-dependent cells. And GNN-D consistently
outperforms the baselines. For instance, for cell towers
with high centrality (� 1:2� 10�2), GNN-D is 23.3, 20.5, 12.6,
19.0 percent better than ARIMA, LSTM, HW and GNN-A in
MAE, and 60.7, 26.2, 28.6, 11.2 percent better than ARIMA,
LSTM,HWandGNN-A inMARE.

Temporal View of Prediction Errors. This experiment
shows the temporal trend of the prediction errors of all
the methods. Since both the traffic volume and its chang-
ing rate usually vary with time, the experiment demon-
strates how the prediction accuracy is affected by traffic
volume and traffic changing rate. Figs. 17e and 17f plot
the MAE and MARE metrics during one day. In accord
with our evaluations of the impact of traffic volume on
the prediction performance, during busy hours in the
morning (7:00, 9:00, 11:00), MAE increases while MARE
decreases, as the traffic peaks at these times. One

Fig. 17. Different perspectives on predicting performance.

Fig. 18. Spatial distribution of PageRank centrality.
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exception is that at 10:00, there is a valley in cellular traf-
fic, and it is expected that for all the methods, MAE will
decrease and MARE will increase. However, both ARIMA
and LSTM have large MAE, indicating that they fail to
predict even modest traffic volume. A closer look at the
traffic pattern around 10:00 shows that the cellular traffic
changes rapidly around 10:00, suggesting intensive mobil-
ity, and thus strong mobility. As ARIMA, LSTM, HW and
GNN-A fail to account for spatial dependency of cellular
traffic, they naturally perform poorly when there is inten-
sive mobility. In contrast, GNN-D encodes the spatial
dependency into the graph model, so that it can still pre-
dict the fast-changing cellular traffic accurately and
achieve small MAE.

7 CONCLUSION

Motivated by the decomposition of in-tower and inter-
tower data traffic, we model the spatio-temporal features of
traffic patterns in a metropolis by a directed graph and pro-
pose a powerful deep learning approach that can learn from
a graph structure. We achieve large-scale and fine-grained
prediction based on a big data set of cellular network
records collected by a mobile carrier.

Experiment results show that the spatial dependency and
the interaction of spatial and temporal factors play an
important role in accurate and robust prediction. Our find-
ings also include how their interaction can be used for event
inference through example study. In the future, along with
the explosive growth of mobile Internet and continuously
evolving traffic patterns, known models are outdated and
new opportunities are sprouting.
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